A note on α-drawable k-trees

نویسندگان

  • David Bremner
  • Jonathan Lenchner
  • Giuseppe Liotta
  • Christophe Paul
  • Marc Pouget
  • Svetlana Stolpner
  • Stephen Wismath
چکیده

We study the problem of realizing a given graph as an α-complex of a set of points in the plane. We study the realizability problem for trees and 2-trees. In the case of 2-trees, we confine our attention to the realizability of graphs as the α-complex minus faces of dimension two; in other words, realizability of the graph in terms of the 1-skeleton of the α-complex of the point set. We obtain both positive (realizability) and negative (nonrealizability) results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing β-Drawings of 2-Outerplane Graphs

A proximity drawing of a plane graph G is a straight-line drawing of G with the additional geometric constraint that two vertices of G are adjacent if and only if the well-defined “proximity region” of these two vertices does not contain any other vertex. In one class of proximity drawings, known as β-drawings, the proximity region is parameterized by β, where β ∈ [0,∞]. Given a plane graph G, ...

متن کامل

A note on the 2-domination number of a tree

For a positive integer k, a set of vertices S in a graph G is said to be a kdominating set if each vertex x in V (G)−S has at least k neighbors in S. The order of a smallest k-dominating set of G is called the k-domination number of G and is denoted by γk(G). In Blidia, Chellali and Favaron [Australas. J. Combin. 33 (2005), 317–327], they proved that a tree T satisfies α(T ) ≤ γ2(T ) ≤ 3 2 α(T ...

متن کامل

Matched Drawings of Planar Graphs

A natural way to draw two planar graphs whose vertex sets are matched is to assign each matched pair a unique y-coordinate. In this paper we introduce the concept of such matched drawings, which are a relaxation of simultaneous geometric embeddings with mapping. We study which classes of graphs allow matched drawings and show that (i) two 3-connected planar graphs or a 3-connected planar graph ...

متن کامل

A NOTE ON THE EQUISEPARABLE TREES

Let T be a tree and n_{l}(eIT) and n_{2}(eIT) denote the number of vertices of T, lying on the two sides of the edge e. Suppose T_{l} and T_{2} are two trees with equal number of vertices, e in T_{1} and f in T_{2}. The edges e and f are said to be equiseparable if either n_{l}(eIT_{I}) = n_{l}(fIT_{2}) or n_{l}(eIT_{I}) = n_{2}(fIT_{2}). If there is an one-to-one correspondence between the ver...

متن کامل

Drawable and Forbidden Minimum Weight Triangulations

Abstrac t . A graph is minimum weight drawable if it admits a straightline drawing that is a minimum weight triangulation of the set of points representing the vertices of the graph. In this paper we consider the problem of characterizing those graphs that are minimum weight draw~ble. Our contribution is twofold: We show that there exist infinitely many triangulations that are not minimum weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008